

The Australian DataCube and Carbon Accounting

Alex Held November 2, 2015

LAND AND WATER www.csiro.au

The Australian National Carbon Accounting System uses Satellite Data to Detect Land Clearing and Regrowth

As part of the annual Greenhouse Gas report to the UN-FCCC, Australia undertakes continental scale monitoring of forest cover using remote sensing data at 25meter resolution every year.

Landsat time series data from 1972-2015

National Carbon Accounting Systems require Data Continuity of time-series at suitable spatial resolution

- 8 Landsat satellites (NASA USGS)
- Two major sensor changes over the inventory time series
 - MSS to TM transition
 - TM / ETM+ to OLI

System uses ~ 400 Landsat scenes per year to map forest cover and change across 7.5 million km² for last 19 years

Source: Australian Department of Environment & CSIRO

Goal is to map changes in forest cover at sub-hectare basis across the continent

Native Forest

-

Post-Fire Regrowth

Clearing

1.134

Fire

80÷.,

Regrowth

6 .

Harvesting

Input - remote sensing – forest cover change

Input - land management information

a 1011 Community of Nation

1000	_			2355			
350	5						
300 F 250	I						
200	-	_	-	-	_	-	-
150	_						
100	6						_
50	t						
0-19		1993	1892	1994 196	1996	1004	2000
-	- C	artion ma	ss of plu	t and its p	noduots ()	(ful)	
		arbon rea	as of for	est and as	products	elite erret	inter 1

Input – climate data

Carbon stock outputs

How to efficiently managed massive satellite data volumes for Australia

10

Traditional remote sensing product process - now everyone

New Data Cube remote sensing paradigm is to provide a single source of "analysis ready data" to end-users, saving about 80% of the work and costs required by separate agencies to get the satellite data to such a level.

Computational Capacity

- The National Computational Infrastructure (NCI)

- Raijin @ National Computational Infrastructure
- 57,472 cores (Intel Xeon Sandy Bridge technology, 2.6 GHz) in 3592 compute nodes;
- 160 TBytes (approx.) of main memory;
- 10 PBytes (approx.) of usable fast filesystem (for short-term scratch space).

37	Research Institute for Information Technology, Kyushu University Japan	QUARTETTO - HA8000-tc HT210/PRIMERGY CX400 Cluster, Xeon E5-2680 8C 2.700GHz, Infiniband FDR, NVIDIA K20/K20x, Xeon Phi 5110P Hitachi/Fujitsu
38	National Computational Infrastructure, Australian National University Australia	Fujitsu PRIMERGY CX250 S1, Xeon E5-2670 8C 2.600GHz, Infiniband FDR Fujitsu
39	Purdue University United States	Conte - Cluster Platform SL250s Gen8, Xeon E5- 2670 8C 2.600GHz, Infiniband FDR, Intel Xeon Phi 5110P Hewlett-Packard

*http://top500.org/

First tests of new "DataCube" technology in Australia: Mapping historical floods and inland water

Continental Surface Water

NFRIP water detection

- **15 Years** of data from LS5 & LS7(1998-2012)
- 25m Nominal Pixel Resolution
- Approx. 133,000 individual ARG-25 scenes in ~12,400 passes
- Entire archive of 1,312,087
 ARG25 tiles => 21x10¹²
 pixels visited
- **3 hrs** at NCI (elapsed time) to compute.

- The Kenya Data Cube Project is led by NASA-SEO and the Australian Government (Geoscience Australia, CSIRO and the Dept. of the Environment).
- The project has a large number of stakeholders and funders ... Australian Government, NASA, USGS, United Nations REDD+ and FAO, Gates Foundation, Clinton Foundation (CCI and SLEEK), SilvaCarbon.
- The project brings together large number of CEOS groups ... Space Agencies (satellites), NASA-SEO (data tools), SDCG for GFOI, LSI-VC, WGISS (data archives), WGCapD (training) and GEOGLAM.

Kenya and Colombia CEOS DataCubes – Testing Integration of Interoperable Optical and Radar

 Kenya Data Cube project plans to integrate optical and radar data within the same user interface.

(JF

- Landsat-7 mosaics and ALOS PALSAR mosaics (example on the left) can be utilized together for improved forest classifications in persistant cloudy regions.
- ALOS data provides unique information about vegetation structure and biomass especially in low density and regrowing forest regions.

Landsat-ALOS Mosaic Example GF

An integrated mosaic was created with the Data Cube over central Kenya for Oct-Nov 2010 using Landsat-7 and the 2010 ALOS-PALSAR 25m mosaic.

ALOS-PALSAR data can be used to fill areas of cloud cover and scan line "banding" within the Landsat-7 imagery for improved forest classification and biomass information.

Conclusions

- Australia has an operational system in place to meet the UNFCCC reporting
- Our systems are subject to ongoing improvement and innovation
- DataCube technologies offer a new approach for petabyte-scale satellite data analysis and improved access to large archives by developing countries.
- We are testing the DataCube and latest research to improve future national estimates of greenhouse gas emissions

ありがとう (Arigatou)

