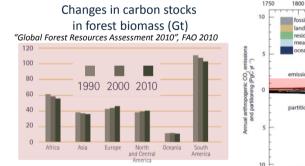
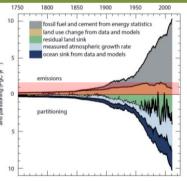


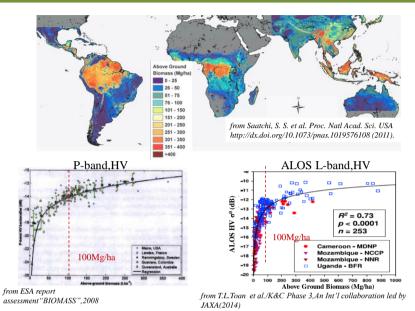
MOLI = 森 =Forest

Multi-footprint Observation Lidar and Imager


Kazuhiro Asai Cordinator of MOLI mission Tohoku Institute of Technology

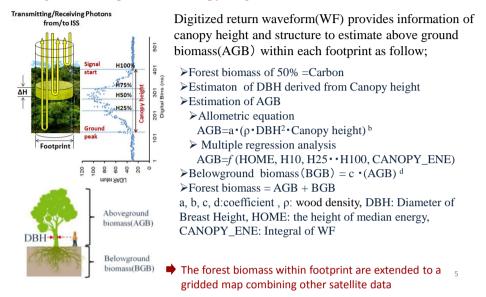


"International Workshop on Vegetation Lidar and Application from Space", January 6-7, 2016 at Kyoto University Rakuyu Kaikan , Sakyo-ku, Kyoto, Japan


Changes in carbon stocks in forest biomass due to land use change

from IPCC 2013 WG1AR5)	1750–2011 Cumulative PgC	1980–1989 PgC yr ^{_1}	1990–1999 PgC yr⁻¹	2000–2009 PgC yr⁻¹	2002–2011 PgC yr⁻¹
Atmospheric increase ^a	240 ± 10 ⁴	3.4 ± 0.2	3.1 ± 0.2	4.0 ± 0.2	4.3 ± 0.2
Fossil fuel combustion and cement production ^b	375 ± 30 ⁴	5.5 ± 0.4	6.4 ± 0.5	7.8 ± 0.6	8.3 ± 0.7
Ocean-to-atmosphere flux ^c	-155 ± 30 ^f	-2.0 ± 0.7	-2.2 ± 0.7	-2.3 ± 0.7	-2.4 ± 0.7
Land-to-atmosphere flux Partitioned as follows	30 ± 45 ^r	-0.1 ± 0.8	-1.1 ± 0.9	-1.5 ± 0.9	-1.6 ± 1.0
Net land use change ^d	180 ± 80 ^{(g}	1.4 ± 0.8	1.5 ± 0.8	1.1 ± 0.8	0.9 ± 0.8
Residual land sink ^e	$-160 \pm 90'$	-1.5 ± 1.1	-2.6 ± 1.2	-2.6 ± 1.2	-2.5 ± 1.3 ²

What we need to more accurately estimate the global forest biomass is


3

Outine

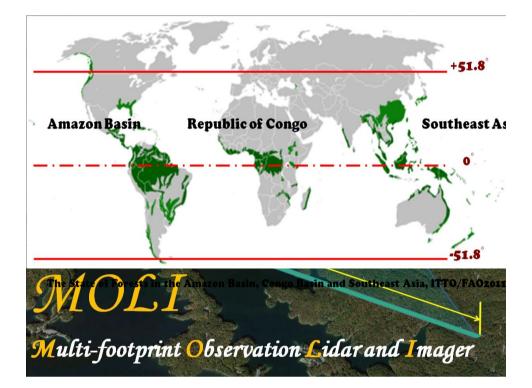
Background
Methodology of vegetation lidar
Dojective of MOLI
Conclusion

Methodology of vegetation lidar to estimate forest biomass from space

Strong relationship between canopy height, DBH, structure and forest biomass

Estimating the canopy height/AGB using GLAS(Geoscience Laser Altimeter System) data

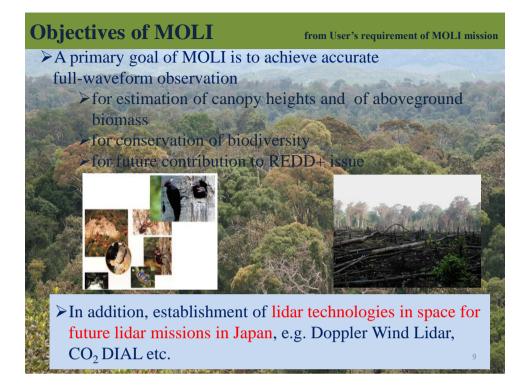
2% of the forested are


A main mission of GLAS was an ice sheet observation in Antarctic, the vegetation was one of the other missions. A design of GLAS was not met to the vegetation mission, however, not only Sawada's and Hayashi's results but also other researcher's those show to be very precious and unobtainable without GLAS dataset.

This is a reason why MOLI mission is needed

MOLI is absolutely designed for the vegetation biomass mission. More worthwhile data will be expected !!!

Wall-to-wall map of estimated canopy height (m) in Amazoniar forest with 500 m resolutions. From **Yoshito Sawada** et al., Int'l J. of Applied Earth Observation and Geoinformation 43 (2015) 92–101


Spatial distribution of aboveground biomass in Borneo with 20-km grid cell From Masatomo Hayashi et al, CARBON MANAGEMENT, 2015, http://dx.doi.org/10.1080/17583004.2015.1066638

MOLI mission team

Yasumasa Hirata*	Forestry and Forest Products Research Institute (FFPRI)
Gen Takao	Forestry and Forest Products Research Institute (FFPRI)
Haruhisa Shimoda	Tokai University
Yoshio Awaya	Gifu University
Yoshiaki Honda	Chiba University
Koji Kajiwara	Chiba University
Jyunichi Suzaki	Kyoto University
Takahiro Endo	The Remote Sensing Technology Center of Japan (RESTEC)
Nobuko Saigusa	Nat'l Inst. for Environmental Research (NIES)
Yoshito Sawada	Nat'l Inst. for Environmental Research (NIES)
Masatomo Hayashi	Nat'l Inst. for Environmental Research (NIES)
Kazuhiro Asai**	Tohoku Institute of Technology
Kohe Mizutani	Nat'l Inst. of Information and Communications Technology
Shoken Ishi	Nat'l Inst. of Information and Communications Technology
Nobuo Sugimoto	Nat'l Inst. for Environmental Research
Tomoaki Nishizawa	Nat'l Inst. for Environmental Research

JAXA/Research and Development Directorate, Sensor System Research Group Toshiyoshi Kimura, Tadashi Imai, Jumpei Murooka, Daisuke Sakaizawa

Science Requirement

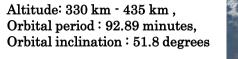
from User's requirement of MOLI mission

Parameters	Coverage	Uncertainties	Remarks	
Forest height	Global	1m-3m, or 10%-20%	For biomass estimation	
	Regional	1m-3m, or 10%-20%	For forest inventory	
	Local	~10%	Site quality estimation	
Forest structure	Global	Three layers ~5m-10m	Contribution to biomass, Forest monitoring	
	Regional	Three layers ~5m-10m	Disturbance, Monitoring, REDD++	
Forest biomass	Global	~20+/ha	Carbon stock	
	Regional	~20t/ha	Forest inventory	
Topography	Global	<2m	DEM	

11

Instruments Requirement

from User's requirement of MOLI mission

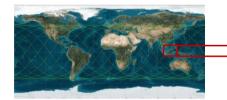

- (1) Vegetation canopy lidar
 - Number of footprint/shot : 2
 - Footprint size: 25 meters dia.
 - S/N > 20 (=> 20mJ/footprint)
 - Distance between footprints ~50 m (along track)
 - =>Repetition rate =150Hz
 - Pointing requirement ~ 10 m

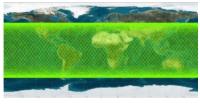
(2) Multi-band Imager

- Wavelength : 500-600(nm), 600-700(nm), 790-910(nm)
- Swath : 500 meters
- Ground resolution : 2 meters (TBD)

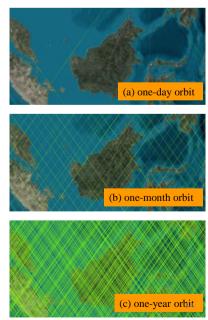
High-resolution images provides information on tree crown size and height, and field data are then necessary to relate this information to biomass.

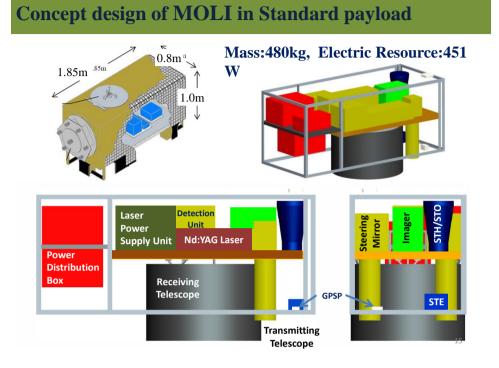
International Space Station(ISS) Japanese Experiment Module (JEM)



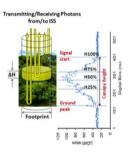

On December 22, 2015, the Japanese and U.S. governments agreed on a new cooperation framework for ISS Program and, accordingly, Japan decided to extend its participation in the ISS operations until 2024.

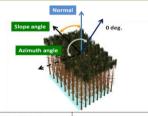
Orbital period : 92.89 minutes, Orbital inclination : 51.8 degrees.

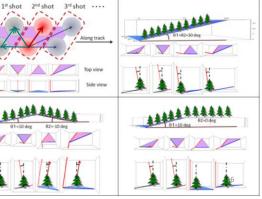



(a) one-day orbit

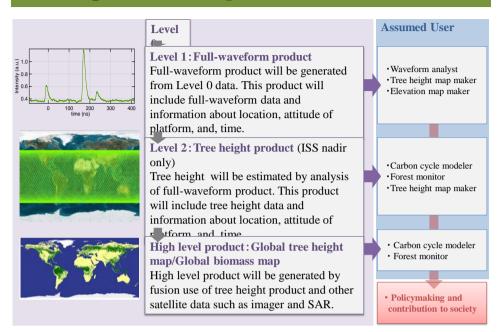
(b) one-month orbit


A chain of islands including Borneo and Celebes and Java and Sumatra in Southeast Asia





Principle of determination for slope & azimuth angle using multi-footprint


The vertical extent of each waveform usually increases as a function of terrain slope. In GLAS data analysis, generally, the terrain slope was carefully calculated using shuttle radar topography mission (SRTM) data to avoid a height error induced by the slope.

Plan for product development

Schedule (tentative)

項目		2015	2016	2017	2018	2019	2020
Trial Test System stu	dy						
PFM							
Integration Test	&						
Launch							
	Laui H-II HTV		H-III				HTV

Perspectives for Vegetation Lidar after MOLI

The requirements of a biomass mission are that it provide global coverage, at a resolution of 10s-100s meters, with accuracies of 20% (or a maximum of \pm 20 Mg biomass/ha). Higher accuracies at coarser resolution will be required for forests with low rates of change. A mission of 3–5 years would be adequate, but a longer mission is preferable in that it would enable rates of change to be observed in more forests. (R.H.Houghton et al., J. Geophys. Res., 114, G00E03, doi:10.1029/2009JG000935, 2009)

MOLI is the first step of vegetation lidar mission in JAXA. A future vegetation lidar mission after achieving scientifically and technologically minimu success should meet to the above recommendatio;

- More multi-footprints to increase observation densities/track
- Synergy effect with Polarimetric In SAR, High-resolution Imager, like the follow-on ALOS2/PALSAR and the follow-on GCOM-C/SGL
- Each agency provides each vegetation lidar for complementing data loss due to clouds, rain in rainforests through international co-operation

The 'residual land sink' has never been measured!!

ありがとう

Thank for you attention

19