Status of MOLI development

MOLI (Multi-footprint Observation Lidar and Imager)

<u>Tadashi IMAI</u>, Daisuke SAKAIZAWA, Jumpei MUROOKA and Toshiyoshi KIMURA JAXA

Outline of This Presentation

- **1.** Overview of MOLI
- 2. System Study
- 3. Trial test of Laser transmitter
- 4. Development Schedule
- 5. Observation Area of MOLI
- 6. Data Products
- 7. Tentative Cal/Val Plan
- 8. Summary

Overview of MOLI

Overview of MOLI

- MOLI (Multi-footprint Observation Lidar and Imager)
 - MOLI will be installed on ISS, Mass: 500kg, Power: 700W, Size: 1850x1000x800 mm
 - Orbit: ISS orbit
 - Non-synchronous
 - Inclination : 51.6 deg Altitude : 330~440 km
- Sensors
 - LIDAR
 - Imager
- Objectives
 - Improving knowledge for Above Ground Biomass
 - Acquisition of an Earthobservation lidar technologies

4

System Study

System Study -- System Requirements

Item	Mission Requirements	Requirements	How to realize
LIDAR SNR	To measure an accurate canopy height (in 3 m)	≧ 10	As shown later
Footprint diameter	To detect a top of canopy	25m	Beam divergence expands to 62.5 μrad by beam expander.
Sampling design	 To measure an accurate biomass To estimate a slope angle of the ground surface 	150Hz x 2 lines along track	Laser Pulse Repetition Frequency (PRF) is set to 150Hz. The number of beam is set to 2 beams per 1 pulse, and MOLI uses an array detector.
Imager	 To understand canopy location and vegetational parameters For ground validation To integrate LIDAR data and 2D data by another satellites 	Spatial resolution: 5.0m (GSD) 3 bands (Green, Red, NIR)	MOLI will use a customized imager that is flight-proven.

SNR (1)

In this study, SNR is defined in Fig. 1.

S = average signal level in waveform extent

N = noise at no signal level (including

background light noise)

S = average signal level (ine) N = noise at no signal level time (ns) Fig. 1 Definition of SNR at MOLI

2 Vegetation Model

• Canopy shape and the values : See Fig. 2

J**X**A

7

JAXA

- Reflectance : 30%@1064nm
- Coverage : 1000 trees/1ha
 - = about 50 trees/25mφ

Fig.2 Vegetation model

SNR (2)

We calculate a received signal power using the following equation (1), and SNR using following equation (2).

SNR (3)

ltem	Symbol	Value	Unit	Note
Laser energy	Pt	20	mJ	Per 1 footprint
Aperture	Ar	0.28	m^2	0.65m in diameter
Optical efficiency	К	0.78	-	
Atmospheric transmittance	Tatm	0.89	-	@1064nm
Pulse width	τ	7	nsec	
Vegetation reflectance	Rvc	0.3	-	@1064nm wavelength
Delta of coverage per height resolution (Average)	ΔCvc	0.076	-	
Received signal power	Pr	31	nW	As a result of (1)
Gain	М	70	-	
Detector sensitivity	Ro	0.48	A/W	
Bandwidth	Bw	100	MHz	
Total noise current	i_n_receiver	4.5	pA/√Hz	Including background noise, detector noise, and thermal noise
SNR	SNR	17.2	-	Target : 10

We confirmed MOLI will achieve more than 10 on our vegetation model.

Sampling design and footprint diameter

- To detect a top point of canopy
 - We set the diameter of footprint to be 25 m.
- > To get a number of sample
 - A number of sample is needed for measuring accurate biomass.
 - MOLI samples 2 lines along track.
 - (MOLI creates 2 footprints by transmitting 2 laser beams.)

> To estimate a slope angle of ground surface

- MOLI can estimate a slope angle of the ground surface using 3 footprints.

Main Specifications

Item	Value	Notes
Laser Wavelength	1064 nm	Nd:YAG Laser
Laser Energy	20 mJ	
Number of Laser	2	
Pulse Repetition Frequency	150 Hz	
Laser pulse width	7 nsec	
Laser Beam Divergence	62.5 µrad	
Diameter of Telescope	0.65 m	
Diameter of one receiver footprint	25 m	
Number of receiver element	2	array detector
Observation range	-50 m ~ 150 m	
Power	700 W	including imager
Weight	500 kg	including imager

Imager main Specifications

• Main specifications

Number of Band : 3 bands (Green, Red, NIR) (Spectral range is shown in below) Spatial resolution : 5.0m Swath : 1,000m (tentative) SNR \geq 50 at each bands

Tentative SNR

Item	Value				
Band	G	R	NIR		
Spectral range	550 ~ 630nm	640 ~ 720nm	740nm~880nm		
Luminance	60% of the maximum value on the orbit				
Aperture	0.15m in diameter (tentative)				
Optical efficiency	0.7				
detector pixel size	12µm				
quantum efficiency	0.70 0.70		0.55		
SNR	230	247	274		

Schematic Diagram of MOLI System

Outlook of MOLI

Trial test of Laser transmitter

Required Parameters for MOLI Laser

ltem	Value	Note
Laser energy	20mJ / 1 pulse (40mJ / 1 pulse is separated to 2 beams)	To achieve required SNR (\geq 10)
Laser PRF	150Hz	To get required number of samples
Pointing stability	< 100 µrad	To determine the geolocation of a laser footprint
Pressurized	About 1 atm.	To suppress the generation of contamination
Life	Over 1 year	target is 2 year
Vibration-proof	HTV launch environment	
Laser-incuded contamination	Pressurized around 1 atm	See the next slide

Objectives of pressurized Laser test

Focused point in evaluation of the pressurized laser

- Operation in Vacuum environment (Laser is set in vacuum chamber)
- Laser Energy and Power
 - 40mJ, 6W operation in vacuum condition
- Laser beam pointing stability
 - target: < 100 µrad
- Laser induced contamination
 - no rapid decrease
- Leak rate
 - Leak rate evaluation and an acquirement of data for a flight model
- Lifetime
 - Power down rate

Specifications of a pressurized Laser

Schematic Diagram of trial test of Laser LD module Pressurized canister Laser oscillator Oscillator 2 ml 150 Hz Output

20

JAXA

19

Current result

6.11W at 150 Hz after 5 days operation (about 40.7 mJ per one pulse)

Shape of the laser beam

Pulse width: 6.4 ns Beam pattern: Near Gaussian, M² < 1.8

trial test result summary

Item	Spec	test Result	status
wavelength	1064nm	1064nm	confirmed
Laser energy	40mJ / 1pulse	40.7mJ / 1pulse	confirmed
Laser PRF	150 Hz	150 Hz	confirmed
pulse width	7 ~ 10ns	6.4ns	confirmed
Pressurized	About 1 atm.	not conducted	will be confirmed in vacuum test
Pointing stability	< 100 µrad	not conducted	will be confirmed in vacuum test
Life	1 year (target)	We will conduct continuous test.	will be confirmed in vacuum test

Optical layout on the air-suspended optical bench

25

Development Schedule

Schedule (tentative)

JFY	2015	2016	2017	2018	2019	2020
Trial Test System study						
PFM						
Integration & Test						
Launch					*	7

27

Observation Area of MOLI

MOLI observation area : one day for global

29

JAXA

The inclination of ISS orbit is 51.6 deg.

MOLI observation area : one month for global

MOLI observation area : one year for global

31

MOLI observation area : one day for particular area Borneo

MOLI observation area : one month for Borneo

MOLI observation area : one year for Borneo

33

The gap between the orbit is 3.5 km on the average.

Data Products

Standard products of MOLI (tentative)

Product level	Product category	Products	Remark	
L1	Lidar footprint products	Waveforms	including geolocation data	
	Imager product (1km swath)	Image	geometrically corrected	
	Lider feathrint products	Tree canopy heights	including geolocation data	
		Forest biomass	including geolocation data	
	Integrated products with	Tree canopy heights		
	(1km swath)	Forest biomass		
L3	Well-te-Well men producte	Tree canopy height map	use for mainly global carbor	
		Forest biomass map	cycle	
			36	

JAXA

37

Tentative Cal/Val Plan

Determination of observation point (pointing bias) 2

Imager Cal/Val plan

Radiometric

- MOLI has no calibration system such as a lamp, solar diffused plate.
- The absolute radiometric calibration of MOLI imager will be carried out as cross-calibration with calibrated satellite images.

<u>Geometric</u>

- MOLI has Star Tracker (STT) and GPS. Precise observation point is determined using STT and GPS.
- Furthermore we use GCP (Ground Control Point) to geometrically correct an image.

JAXA

AXA

Summary

Summary

- We performed system design of MOLI for accurately measuring canopy heights and confirmed system feasibility.
- We developed a trial test of a laser transmitter and had a good result (laser power and beam pattern) so far.
- Pressurized laser evaluation test is now progressing. Next, we will evaluate the performance under the vacuum environment.
- We plan to launch MOLI in 2019.

JĄXA

41