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Outlines along-track products

Along-track 1km width (same as swath of MOLI imager)
* Expanding LiDAR data by spatial modeling
* Data Sets:
1. Tree-height
Canopy Height (RH100), RH90, RH80, RH70,..., RH10

2. Above Ground Biomass

e Spatial Resolution:
50(m) (TBD)

* Inputfor
Producing L3 wall-to-wall tree-height / biomass maps with uncertainty
at global scale



Process Flow to make along-track products

L2 Tree-height / AGB Products » Terrains (Elevation, slope, curvature)

* Landcover type

* Forest type

e Other Environmental Parameters
LiDAR Footprints

Spatial Modeling
(Statistical Models,
Machine-Learning,...)

ISS Flight Path

L1B Imager Products 1km Swath

1km Swath

ISS Flight Path
5m resolution/3 bands

1km-width products

ISS Flight Path (Tree-height / AGB)
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Development of Spatial Modeling Algorithms

Obijectives:
To develop methodologies of producing Tree-height maps by using LiDAR and Imager
data

We are trying three approaches:
1. Statistical Model (FOTO, Proisy et al., 2012)
2. Convolutional Neural Network (Krizhevsky et al., 2012)
3. Machine Learning Method (SOR, Sawada et al. 2015)

Data used:

LiDAR:  ICESat/GLAS (GLAO1, GLA14)

Imager: RapidEye (1 and 2) 5m/5bands
MODIS, GSMaP, SRTM (3)



Spatial Modeling of LiDAR and Imager
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RapidEye (5m/5 bands) — Vegetation Fraction, Spatial Frequency (Texture)
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Making A Forest Mask

R/G/B= 4/5/2 R/G/B = Soil/Vegetation/Water

Enhance:
R
G
B
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Preliminary Results by modified FOTO:
A Canopy-Height (RH100) Map with 100m resolution

RH100(m)
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* Need to validation (by Cross-Validation, canopy height from UAV measurements, ...)



Machine Learning Method (Course Resolution)

Self-Organizing Relationships algorithm (SOR, Yamakawa et al., 1999,2005) are used.

for ICESat/GLAS data

Tree Height by ICESat/GLAS + PCA score (PC1~12) — Training Dataset

|

Training Dataset were classified by SOM algorithm

g

To scale up by SOR algorithm

l PC1 annual average of NDVI and/or NDI|I
PC2 Land Surface Temperature (LST)
PC3 Rainfall
PC4 Slope, Plateau ratio
PC5,PC6 DEM, Seasonal Change of LST
PC7 DEM
PC8 Seasonal Change of rainfall
PC9 Seasonal Change of NDVI and/or NDII
Tree Height (m) PC10 \egetation Dryness
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A map of estimated tree height (RH100)




Validation of estimated tree heights
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« Hdom was calculated from data of ground surveys

 RH100 was estimated by using only satellite data such as ICESat/GLAS, MODIS
» Error bars means 1o



Summary

Our Objectives:
To develop methodologies of producing Tree-height maps by using LiDAR
and Imager data

We are trying three approaches:
1. Statistical Model (FOTO, Proisy et al., 2012)
2. Convolutional Neural Network (Krizhevsky et al., 2012)
* To validate results and to improve methodology are necessary
3. Machine Learning Method (SOR, Sawada et al. 2015)
* A Coarse Resolution (500m) Canopy height map was created
successfully.
* To apply to 5m resolution data

Future Plan:
e To produce above-ground biomass maps



