Modeling of LiDAR and Imager data on MOLI instruments

- Algorithms for MOLI along-track 1 km-width products -

Yoshito Sawada (NIES)

Contents

- 1. Outlines along-track products
- 2. Process Flow to make along-track products
- 3. Spatial Modeling Algorithms
 - Statistical Modeling
 - Machine Learning

Outlines along-track products

- Along-track 1km width (same as swath of MOLI imager)
- Expanding LiDAR data by spatial modeling
- Data Sets:
 - 1. Tree-height Canopy Height (RH100), RH90, RH80, RH70,..., RH10
 - 2. Above Ground Biomass
- Spatial Resolution: 50(m) (TBD)
- Input for

Producing L3 wall-to-wall tree-height / biomass maps with uncertainty at global scale

Process Flow to make along-track products

Development of Spatial Modeling Algorithms

Objectives:

To develop methodologies of producing Tree-height maps by using LiDAR and Imager data

We are trying three approaches:

- **1. Statistical Model** (FOTO, Proisy et al., 2012)
- 2. Convolutional Neural Network (Krizhevsky et al., 2012)
- 3. Machine Learning Method (SOR, Sawada et al. 2015)

Data used:

- LiDAR: ICESat/GLAS (GLA01, GLA14)
- Imager: RapidEye (1 and 2) 5m/5bands MODIS, GSMaP, SRTM (3)

Spatial Modeling of LiDAR and Imager

RapidEye & GLAS	613004051_15 750197278_31 613004051_30 453807433_2 446688663_13 613004051_30 453807433_19 446688663_4 453807433_28 446688658_35 446688658_25	凡例 ? GLAS footprints
	750197278 31 281452076 24538074352 446688663 25	V GLAS footprints
* *	613004051_30	
	453807433 28 + + + + + + + + + + + + + + + + + +	
2	453807433 37	The second
	433807433_37 446688658 25	
	281452071_9 446688658_16 25km × 25km	
	281452066 40 440088038_/	
	281452066 31 44/6688653_38	
	281452066 22 446688653 28	t t
	77784551_281452066 13 446688653 19	-
	281452066 22 446688653 28 277784551 281452066 13 446688653 19 153807443 281452066 4 446688653 10 53807443 281452066 4 446688653 10 53807443 281452061 35 446688653 1	
	443238178_36 53807443_1281452061 35 446688653_1	And Ma
C. Z. (2) .	278001606_10 281452061_32 446688648_36	
	278001606 2 281452061 24 4 46688 48 27	
	443238178_1 - 53807448_7281452061_18, 446688648_21	41
	27 7784556_31 281452061_9 446688648_21 27 784556 40 281452061_9 446688648_12	
	277784560_51 277784556_40 277784561_8 281452056_40 446688643_39 277784561_8 281452056_31 446688643_39	
1		
	277 784 561 25 2814 520 56 22 44 32 3817 12 57 7 380 24 88 31 1 44 66 88 64 3 1(
	070004500 40 2///84001-201452056 4	
	443238168 25 11 281452051 33	
	278001596_15 443238168_25 278001591_39453807453_281452051_33 278001591_39453807453_35 446688638_23 278001591_39453807453_35	
oogle earth	112200162 1453807458 1201402001 12 440088038 10	A A
ge @ 2015 CNES / Astrium	292238366 453807458_22 281452051_2 446688638_6	N
e © 2015 DigitalGlobe	453807458 31 281452046 33 446688633 37	10 km

• RapidEye (5m/5 bands) \rightarrow Vegetation Fraction, Spatial Frequency (Texture)

Making A Forest Mask

R/G/B = 4/5/2

R/G/B = Soil/Vegetation/Water

Enhance:	
R	0.0~0.5
G	0.5 ~ 1.0
В	0.0~0.2

Preliminary Results by modified FOTO:

A Canopy-Height (RH100) Map with 100m resolution

• Need to validation (by Cross-Validation, canopy height from UAV measurements, ...)

45

Machine Learning Method (Course Resolution)

Self-Organizing Relationships algorithm (SOR, Yamakawa et al., 1999,2005) are used.

for ICESat/GLAS data

Tree Height by ICESat/GLAS + PCA score (PC1~12) \rightarrow Training Dataset

Training Dataset were classified by SOM algorithm

ļ

To scale up by SOR algorithm

Tree Height (m)

40~

PC1	annual average of NDVI and/or NDII
PC2	Land Surface Temperature (LST)
PC3	Rainfall
PC4	Slope, Plateau ratio
PC5,PC6	DEM, Seasonal Change of LST
PC7	DEM
PC8	Seasonal Change of rainfall
PC9	Seasonal Change of NDVI and/or NDII
PC10	Vegetation Dryness

A map of estimated tree height (RH100)

Validation of estimated tree heights

RH100(m)

RH100(m)

- Hdom was calculated from data of ground surveys
- RH100 was estimated by using only satellite data such as ICESat/GLAS, MODIS
- Error bars means 1σ

Summary

Our Objectives:

To develop methodologies of producing Tree-height maps by using LiDAR and Imager data

We are trying three approaches:

- 1. Statistical Model (FOTO, Proisy et al., 2012)
- 2. Convolutional Neural Network (Krizhevsky et al., 2012)
 - To validate results and to improve methodology are necessary
- 3. Machine Learning Method (SOR, Sawada et al. 2015)
 - A Coarse Resolution (500m) Canopy height map was created successfully.
 - To apply to 5m resolution data

Future Plan:

• To produce above-ground biomass maps