Vegetation lidar WS, Chiba University, May 26, 2017

Role of the active sensing in the satellite earth observation

Teruyuki Nakajima JAXA/EORC terry-nkj@nifty.com

Active sensors

- Atmospheric aerosols and clouds (CALIPSO, EarthCARE)
- Wind vectors, hydrometers fall velocity by Doppler (ADM, EarthCARE)
- Water vapor and other gaseous compositions, DIAL, multi-wavelengths
- Hydrosols: NUV, VIS for surface 100m
- Biomass, Ice volume, muti-beams (ICEsat, GEDI, MOLI etc)

All weather

- Hydrometeor. radar: GPM/DPR (Ku, Ka), CLOUDSAT, EarthCARE (Wband)
- Ocean altimeter: all weather (TOPEX/Poseidon, Jason-1,2 etc, C, Ku, Ka...)
- SAR: TerraSAR-X (X), PALSAR-2 (L)
- High spectral resolution, Raman
- Doppler, interferograms
- Scanning

Major Japanese E/O satellites, instruments

Uncertainties in cloud modeling

- Climate models are still at tuning stage
- Combined passive and active remote sensing effective to solve this problem: e.g. CFODD (*K. Suzuki et al., JAS' 10*)

Golaz et al. (GRL'13)

Suzuki, Golaz, Stephens (GRL '13)

Different response of the climate system

- Concept of Efficacy (Hansen et al., 2005)
- Model difference large

Cloudiness change by 10xBC MIROC SST prescribed

(MOEJ-S-12)

Suzuki, Takemura, Goto (MOEJ S12 workshop'17)

to be appeared after publication

GPM/DPR Data Assimilation in the JMA NWP

The Japan Meteorological Agency (JMA) started the DPR assimilation in the meso-NWP system and the GMI assimilation in the meso- and global-NWP system on March 24 2016. \rightarrow Word's first "operational" assimilation of spaceborne radar data in the NWP system of meteorological agencies!

a) 33-hour prediction without the DPR	b) 33-hour prediction with the DPR	c) Observation		
to be	appeared after publication			

• Example of Kanto-Tohoku Heavy Rainfall in 2015

Provided by JMA

- Improvements in water vapor analysis accuracy over the ocean
- Improvements in rainfall forecast accuracy

Extreme weather increase and disaster monitoring

Flood caused by KANTO/TOHOKU heavy rain in Joso-city, Ibaraki-Pref. in September 2015.)

Increasing extreme weather events

of Precip events more than 50mm/hr

Flooded area detection by ALOS-2

Flooded area expanding

Flooded area reducing but moving to south direction

Global warming problem: Change in cryosphere

AMSR-2 TB (18V/36V/36H) data, Greenland ice in

Global anthropogenic CO₂ budget

• Needs precise evaluation of "BIOMASS" and its change

(IPCC AR5)

	1750–2011 Cumulative PgC	1980–1989 PgC yr ⁻¹	1990–1999 PgC yr ⁻¹	2000–2009 PgC yr ⁻¹	2002–2011 PgC yr-1
Atmospheric increase ^a	240 ± 10'	3.4 ± 0.2	3.1 ± 0.2	4.0 ± 0.2	4.3 ± 0.2
Fossil fuel combustion and cement production ^b	375 ± 30 ^r	5.5 ± 0.4	6.4 ± 0.5	7.8 ± 0.6	8.3 ± 0.7
Ocean-to-atmosphere flux ^c	-155 ± 30'	-2.0 ± 0.7	-2.2 ± 0.7	-2.3 ± 0.7	-2.4 ± 0.7
Land-to-atmosphere flux Partitioned as follows	30 ± 45'	-0.1 ± 0.8	-1.1 ± 0.9	-1.5 ± 0.9	-1.6 ± 1.0
Net land use change ^d	180 ± 80 ^{r,g}	1.4 ± 0.8	1.5 ± 0.8	1.1 ± 0.8	0.9 ± 0.8
Residual land sink ^e	$-160 \pm 90'$	-1.5 ± 1.1	-2.6 ± 1.2	-2.6 ± 1.2	-2.5 ± 1.3

- Cumulative result shows contribution of "Land to atmosphere flux" is enough large, comparing with "Fossil fuel combustion (Anthropogenic)"
- Recent result shows the uncertainty of "Land to atmosphere flux" is much worse.

Differences of CO₂ land flux estimation from Top-down and Bottom-up approaches

Ciais et al., (2013) 13

Active / Passive Synergy technique is the key

JICA-JAXA Forest Early Warning System in the Tropics (*JJ-FAST*)

- A new JICA&JAXA deforestation monitoring system under development
- ALOS-2/PALSAR-2 ScanSAR mode HV image.
- Coverage: 79 countries
- Update: Every 1.5 months
- iPhone

Wide swath of 2,320km; High resolutions of 1-3m

Surface/infrastructure deformation monitoring

World satellite plans: Lidar

[NO Japanese Earth Observation Lidar (Active Optical) yet]

World trend analysis of the earth observation plans, Meteorol. Note 2017, TF Earth Science Study WG

JAXA's engineering plan: Climate change mitigation

New Basic Plan on Space Policy & work plan(Jan. '15)

- Governance by Cabinet Office; No GEO subcommittee
- No plan for other remote sensing satellites after 2020
- Active EO sat. planning (2020-40) in the world (US, Euro, China etc)

Shared Tools

Summary

- Climate & environmental change program
 - Forcing: LLGHG, SLCP; emission estimate
 - Climate sensitivity, mechanisms: Cloud, precipitation
 - Impacts: water, ecosystem, cryosphere
- Disaster prevention program
- Horizontal and vertical information needed
- Imager, lidar, radar technologies in progress