International Workshop on Vegetation Lidar and Application from Space 2017 Chiba University

# Potential application of MOLI data into terrestrial carbon cycle modeling

## Kazuhito Ichii

Center for Environmental Remote Sensing (CEReS), Chiba Univ.

#### Available biomass data

Based on vegetation optical depth

1993-2012, 0.25deg, Global



Based on vegetation height (ICEsat)

One time (around 2000), 1km, tropical



[totB; MgC/ha]

[Liu et al. 2015; Nature Climate Change]

[Saatchi et al. 2011; PNAS]

### **Available tree height data**



(ICEsat GLAS)

# Topics

How can current terrestrial carbon cycle model simulate biomass? [e.g. Ichii et al. 2010]

How can we use biomass data into terrestrial carbon cycle model?

Show our experiments [e.g. Kondo et al. 2013]

#### **Terrestrial Carbon Cycle Model**



- ✓ Vegetation-Litter-Soil System
- ☑ Fluxes, Pools



Past-Present-Future

Vegetation Status
Stock, Flux changes
Human effect (disturbance)

#### Model output example







Inventory-based assumed biomass

## Site-level model experiment

#### Japan-MIP (Model Intercomparison Project)



[planted forest; age

#### Diagnostic model

BEAMS [Sasai et al., 2005]

CASA [Potter et al., 1993]

TOPS [Nemani et al., 2003]

Satellite+Climate

#### Prognostic model

VISIT [Ito, 2007]

Biome-BGC [Thornton et al., 2002]

**DayCENT** 

Climate Only

#### Dynamic Veg. model

SEIB-DGVM [Sato et al., 2007]

LPJ [Sitch et al. 2003]

TRIFFID [Cox et al., 2001]

Climate Only

[Ichii et al. 2010; Biogeosciences]



NEP (net CO2 flux) 200 Fujiyoshida Teshio NEP (gC/m2/mon) 100 0 -100 200 Tomakomai Takayama NEP (gC/m2/mon) 100 +/-stdev Ave BGC VISIT LPJ SEIB CASA 0 -100 OBS **JFMAMJJASOND JFMAMJJASOND** 

# Biomass... Large variation among models

## (a) Biomass

|                | FJY       | TKY       | TMK       |
|----------------|-----------|-----------|-----------|
| BGC            | 55.2      | 69.5      | 61.7      |
| CASA           | 6.3       | 9.9       | 8.9       |
| LPJ            | 12.9      | 6.5       | 13.9      |
| <b>DayCENT</b> | 12.0      | 5.5       | 7.9       |
| SEIB           | 1.0       | 12.0      | 16.4      |
| TRIFFID        | 11.3      | 6.6       | 10.1      |
| VISIT          | 1.1       | 16.5      | 5.2       |
| Total          | 14.3±18.7 | 18.1±23.0 | 17.7±19.7 |
| OBS            | 19.2      | 15.7      | 15.2      |

## Why is biomass poorly estimated?

1. Data Availability

CO2 fluxes (GPP, RE, NEE): easily available from network observation

(e.g. AsiaFlux, FLUXNET)

uniform observation methods (e.g. eddy-covariance)

Biomass difficult (time-consuming) for observation

observation-method varies among sites

2. Difficulty in tuning

CO2 fluxes (GPP, RE, NEE): Directly related to process (e.g. photosynthesis)

Easy to tune..

Biomass calculated by the balance of fluxes..

Hard to tune..

## Model parameter optimization experiment

#### **Experiment:**

Biome-BGC model (C, H2O, N cycle)

Importance of Carbon Flux, Pool data to reproduce terrestrial carbon state. (CO2 flux and biomass)

#### **Model Parameter Optimization**

Exp1) Constrained by CO2 fluxes & Biomass

Exp2) Constrained by CO2 fluxes only

Exp3) Constrained by Biomass only



# CO<sub>2</sub> fluxes are effective to constrain CO<sub>2</sub> fluxes



Optimizing using CO<sub>2</sub> flux (and both CO<sub>2</sub> flux and pool) can reproduce observed fluxes.

Biomass data cannot constrain CO<sub>2</sub> fluxes.



### Biomass data are required to reproduce "observed" Biomass



#### **Experiment:**

Biome-BGC model (C, H2O, N cycle)

Optimizing using biomass (and both CO<sub>7u</sub> flux can reproduce observed fluxes.

Biomass data cannot constrain CO2 fluxes..



#### Summary and some comments

- Biomass is one of the key parameters of terrestrial ecosystems. However, many ecosystem models cannot reproduce it.
- In general, so far, terrestrial ecosystem model (carbon cycle model) are well calibrated to CO<sub>2</sub> fluxes, such as GPP, RE, NEE.
- MOLI products (e.g. biomass) will help to improve terrestrial carbon cycle models. It leads to improve terrestrial CO<sub>2</sub> simulation, including future projection.
- In addition, I would like to look 'changes of forest status' through multi-year observation using a single sensor.